Дифференциальный оператор


Дифференциальный оператор, оператор, определённый дифференциальным выражением и краевыми условиями. Различают Д.о. обыкновенные и с частными производными (напр., эллиптические, гиперболические, параболические); линейные, квазилинейные, нелинейные. Теория Д.о. позволяет применять классич. методы теории операторов (напр., метод сжатых отображений) в теории бифуркации решений, иссл. задач на собственные значения, теоремах существования и единственности решений краевых задач для дифференциальных уравнений. В респ. с 50-х гг. 20 в. развивается спектральная теория линейных обыкновенных и эллиптических Д.о. В Башкирском государственном университете (Х.Х.Муртазин, Я.Т.Султанаев) проведены иссл. спектральных свойств сингулярных Д.о. (спектральные разложения, качественный и количественный характер расположения и асимптотика спектра). Впервые изучены регуляризованные следы Д.о. с частными производными на многообразиях, получены формулы следов Гельфанда-Левитана для возмущений двумерного гармонического осциллятора и оператора Лапласа-Бельтрами на двумерной сфере (З.Ю.Фазуллин); проведены иссл. обратных спектральных задач и их приложений в механике (А.М.Ахтямов). С 90-х гг. в Стерлитамакской педагогической академии (К.Б.Сабитов) изучаются спектральные задачи для Д.о. с частными производными смешанного типа. Найдены собственные значения и построены собственные функции для Д.о. Лаврентьева—Бицадзе, Д.о. Чаплыгина, на основе к-рых получены решения краевых задач для ур-ний смешанного типа в виде суммы биортогональных рядов. В Математики институте исследуются Д.о. на многообразиях, развивается теория индекса Д.о., приложения теории Д.о. в геометрии, спектральная теория Д.о. (Ю.А.Кордюков), эллиптические Д.о. и их обобщения (Р.С.Сакс).

Комментарии0